
 

 

Proactive, Preventive, Near-Perfect Security for Crypto-Keys 
and Crypto-Devices confronted by Artificial Superintelligence 

Erland Wittkotter, PhD. 
ASI Safety Lab Inc. 

Las Vegas, USA 
+1 702-997-2475 

erland@asi-safety-lab.com 
 

ABSTRACT 
The security of current crypto infrastructure is no match for an Ar-
tificial Superintelligence (ASI), the likely result of a possible intel-
ligence explosion by a self-improving AI. ASI would likely modify 
any software, steal encryption keys, or misuse local crypto compo-
nents. Although an ASI with that skill set does not exist yet, it is 
feasible and important to be prepared. Under such circumstances, 
every private, public, or session key processed within a CPU must 
be considered compromised. Trustworthy Encryption/Decryption, 
including unbreakable communication between devices, must be 
the bedrock technology for any ASI Safety solution to keep ASI 
under control. The proposed solution is a hardware component with 
Key-Safe and an associated Encryption/Decryption Unit (EDU). It 
prevents keys from being in cleartext outside the dedicated hard-
ware. No current solution can determine if the corresponding re-
ceiver or sender is crypto hardware or a compromised crypto soft-
ware/simulation. The proposed solution refers to keys via their 
hashcodes. If ASI breaches the hardware protection around keys, 
detection solutions must check for covertly stolen, compromised 
keys within EDU’s data exchange. Key-Safes and hashcodes re-
lated to public/private keys can be integrated into a minimally ex-
tended but intentionally incompatible version of TLS and PKI. 
Keys available in cleartext outside EDU are never processed in 
EDU. EDUs can be used in Trustworthy Communication, facilitat-
ing legitimate surveillance, and Trustworthy eCommerce, address-
ing problems of misused hardware crypto-components. 
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1. Introduction 
Companies and nation-states invest considerably in Artificial Intel-
ligence (AI) to get smart, autonomous solutions for problems that 
require human intelligence. Machine Vision, decision making, au-
tomation, driverless mobility, and many other issues require novel 
solutions which adversarial side effects to human security we can-
not forecast. A significant technical step forward is Artificial Gen-
eral Intelligence (AGI). AGI is, according to Wikipedia [1], “a hy-
pothetical ability of an intelligent agent to understand or learn any 

intellectual task that a human being can”. The concern is that this 
AGI goes through an exponential phase of continuous self-im-
provement – an Intelligence Explosion [2-4], after which AI is in-
tellectually much faster and more comprehensively organized than 
humans. The result is called Artificial Superintelligence (ASI). 
Because we cannot predict the future, capabilities, scope of auton-
omy, or potential intentions of an ASI, we should be prepared by 
planning based on likely developments and trends. We cannot 
know if or when ASI will be developed, but it is considered feasible 
and likely [5-7]. This paper will focus on methods against threats 
to data encryption and decryption security from ASI and criminal 
actors using AI or ASI. 
Shannon’s Information Theory has introduced the concept of Per-
fect Secrecy [8], sometimes also called Perfect Security, defined as 
a situation in which any third-party eavesdropper cannot learn an-
ything about the message except its length from intercepting ci-
phered messages within transmissions. This definition is narrow 
and limited to transmission or storage and is conceptionally not ap-
plicable to other security-related problems. Shannon’s definition 
does not include security measures around crypto units or keys. It 
implicitly assumes that no information leak occurs, i.e., there will 
be no stolen encryption/session keys, pre-encrypted/decrypted 
message leakage, or software manipulation of any crypto-compo-
nent. Perfect within the scope of transmissions or storage means 
that secrecy or security cannot be better in that limited scope. Fer-
guson, Schneier, and Kohno [9] point out that “there’s no such 
thing as perfect security”. Security can often be broken by extend-
ing relevant scope or context because used measures can be re-
moved, ignored, or their assumption invalidated. The quoted meme 
sounds common sense, and anecdotal evidence seemingly supports 
it, but it is not a proven fact. There is a chance that a combination 
of prevention, protection and detection measures exist that has the 
potential to deliver near-perfect security and eliminate (or mitigate) 
damages proactively, automatically, and predictably. 
Data security deals with three significant aspects: (a) prevention of 
eavesdropping/spying on protected messages, (b) validation of 
message authenticity, and (c) prevention/protection and detection 
of message modifications, in particular within Man-In-The-Middle 
Attacks (MITMA). Covert, security-critical information leakages 
could happen on both sides: sender or receiver. Data security is 
about the integrity of all used crypto-components, i.e., that these 
components do not (i) reveal messages before or after encryp-
tion/decryption, (ii) divulge private, public, or session keys to un-
authorized entities, or even attackers and (iii) modify messages 
covert or undetectable. 
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Today’s malware is already attacking the integrity of crypto-com-
ponents, providing direct threats to the secrecy of keys in cleartext, 
including malicious or covert utilization of crypto components, 
which has led to the recommendation to use 2-Factor Authoriza-
tions by users and consumers. 
The essential assumption behind this paper is that we assume that 
more advanced adversaries, like criminals using AI/ASI or an au-
tonomous ASI, are trying to steal encryption keys or utilize crypto 
components covertly in pursuit of unknowable agendas. ASI is as-
sumed to be comprehensively and immediately aware of any vul-
nerability of its target. Despite weaknesses, which are too numer-
ous to be removed, human security defenses must not just be better; 
they must become sufficiently reliably against a highly adaptable 
and scalable ASI. We must accept: anything that ASI can (likely) 
break has no security. Dealing with trusted devices is insufficient; 
once hacked, they could become spies, traitors, or saboteurs any-
time. We need trustworthiness, i.e., a quality [10] that prevents sys-
tems from turning against their owners or users. It would inde-
pendently detect adverse utilization, stop operating before creating 
damage, and remain loyal after being forced to create damage by 
trying to mitigate/repair potential damages. 
Practical applications of hardened/trustworthy encryption are re-
porting ASI’s rule violations, distributing messages affecting or di-
minishing ASI capabilities (e.g., killing ASIs operation), protecting 
communication (including software updates), and eCommerce, 
which encompasses reliable digital signatures. This paper explains 
how the proposed solution can be used to provide unbreakable 
(Trustworthy) Communication between humans, including re-
quired court-supervised surveillance and (Trustworthy) eCom-
merce using irrefutable evidence generation. 
The main goal of this paper is to describe how Trustworthy Encryp-
tion/Decryption is designed to keep all keys secret: ASI shall not 
steal encryption keys or covertly utilize crypto components. The 
solution encompasses measures on how compromised crypto-keys 
or devices are detected. 

2. Threat Model, Weakest Links, and Key Protec-
tion Methods 

2.1 Assumptions on Adversaries 
The to-be-considered adversary is significantly beyond the skill 
level of even the highest educated, extraordinarily knowledgeable, 
and accomplished group of human attackers who has the best tools 
hackers or crackers could wish for to make their attacks easier, 
faster, more efficient, and effortless. The availability of financial 
resources is irrelevant for this attacker. Its response time is meas-
ured in seconds or milliseconds. The assumed adversary, an Artifi-
cial Superintelligence (ASI), would be relentless, highly focused, 
studying and testing systematically 1000s or even millions of ap-
plicable vulnerabilities in preparation for any contingency. 
Even if it seems hopeless to provide protection against an adversary 
like that, planning defenses against ASI must consider worst-case 
scenarios. Unfortunately, ASI will likely penetrate any firewall, de-
ceive or ignore any anti-malware program because it could covertly 
steal any access credentials or encryption keys it might need. Soft-
ware-only security solutions are (likely) flawed. 

Computer theoretical considerations suggest that autonomous ASI 
behavior cannot be computationally predicted and therefore cannot 
be considered safe [11]: "total containment is, in principle, impos-
sible, due to fundamental limits inherent to computing itself". Yam-
polskiy, 2020 [12] comes to a similar conclusion: “Advanced AI 
cannot be fully controlled”. 
Covertly modifying any type of software, including altering and 
adapting its own operating code, would likely be a defining feature 
of ASI. Humans know about Reverse Code Engineering (RCE) to 
understand binary/compiled applications, modifying them so that 
software can do tasks differently. The threat of RCE utilized by ASI 
is that all executables can be attacked on hard drives, RAM, or even 
in a CPU’s cache quickly and effectively without leaving traces. 
ASI could likely deal with CPU’s complexity more competently 
and faster than humans. CPU’s instruction sets for 32-bit chips are 
over 1,500 different CPU instructions [13], while 64-bit chips have 
over 2,000 [14]. After an intelligence explosion, ASI will likely 
master code analysis and binary code modifications for all CPUs 
and applies this to stealing keys undetectable and untraceable. 
In summary, ASI could be a ubiquitous Super-Hacker, Master-
Thief, and undetectable Digital-Ghost, i.e., the worst and most ca-
pable adversary imaginable. It could be on every electronic device, 
know its weaknesses, and always have first-mover advantages 
when choosing its targets, tools, and methods. Every read-write 
storage device, every CPU, every GPU, every audio/video or net-
work card or network router, every phone, camera, drone, vehicle 
or plane, every IoT device, including every legacy device and many 
legacy storage media (like thumb drives, CDs) could be a battle-
ground with ASI. ASI could even leave malware or backdoors in 
any hardware component during its design. There is no reason to 
assume that there is anything off-limits. 

2.2 Security is as Good as Weakest Link 
Encryption/Decryption primarily focuses on strengthening mes-
sage security, integrity, and authenticity during transmission or 
stored on otherwise unprotected storage media. So far, the be-
fore/after encryption or decryption, the protection of the used keys, 
and crypto components have not received similar attention, except 
for the standard access protection from the device’s operating sys-
tem. Efforts to protect keys have led to security hardware, but its 
unauthorized usage has created new concerns and vulnerabilities. 
Software vulnerabilities, unintentionally included by human devel-
opers, are accepted as inevitable attributes of algorithms/software. 
However, bugs in the hardware of devices are worse as they would 
potentially require the exchange of the entire hardware component, 
while bugs in software could be fixed with updates. Unfortunately, 
software updates create new vulnerabilities. Among developers, 
there is the saying that there is no bug-free software; others are us-
ing a similar statement about security: there is no secure software. 
Both views certainly exaggerate when dealing with simple code, 
but it is valid for complex software. There is an underlying princi-
ple: complexity is the worst enemy of security [9], and a single vul-
nerability or the weakest link could make all security efforts useless 
[10]. It is a safe assumption for our current IT ecosystem: there is 
no protection or security against anything ASI could intend to do. 
In this context, ASI’s expected ability to steal user credentials or 
encryption keys is likely a trivial task but very significant. 
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2.3 Security of Current Key Protection Schemes 
Protecting encryption keys is a known problem in cryptography; it 
is not sufficiently solved yet. There is usually the advice to store 
private keys safely with corresponding best practices [15] and the 
recommendation to exchange and renew Public-Private Key Infra-
structure (PKI) keys from time to time [10]. There are also exten-
sive instructions, but for most users, impracticable, e.g., from the 
National Institute of Standards and Technology, NIST [16-18], dis-
cussing details and principles on over 300 pages. But none of these 
presented methods can prevent ASI from stealing or using these 
keys covertly in the first place. It is doubtful if we can improve 
existing key-protection systems and make them good enough to 
stop ASI from stealing or using encryption keys. 
Once RCE is an efficient standard tool for attackers to steal keys by 
modifying software, key secrecy is hard to defend. Software-only 
security solutions are likely impossible to develop because soft-
ware-only security must be static – otherwise, if updateable, modi-
fied software could obtain intentional vulnerabilities. But static 
software protects only against known threats and not against threats 
developed based on new capabilities from future attack solutions 
against a system’s limited defense capabilities. Once attackers have 
gained Sysadmin privileges, little to nothing can be done in a soft-
ware-only defense situation. There are only a few methods usable 
against RCE. 
1. Access Management: The OS is trying to make rights elevation 

as difficult as possible so that attackers will not receive suffi-
cient access rights, i.e., sysadmin rights, to start an attack on 
the targeted software. The reality is OS can never prevent this 
because the OS cannot decide between feature and bug. En-
cryption cannot rely on reliable access control management: 
en-/decryption software will be attacked with sysadmin rights. 

2. Obfuscating: The machine code of software is being made 
more difficult to understand [19], but this is relevant for human 
attackers only. Obfuscators are inserting new subroutines or 
making simple operations extra-complicated without changing 
the actual result of the calculation. Attackers already use any 
combination of VMs, profilers, disassemblers, and statistical 
tools to save time in understanding or simplifying the code [19]. 

3. Temper-proofing software: Internal runtime tools in software 
can detect and possibly block computer attacks that change ma-
chine code; this is also called RASP (Runtime Application 
Self-Protection) [20]. RASP solutions claim that they are mak-
ing it harder to reverse engineer software, but any product 
claims it cannot be hacked. It seems only a matter of time be-
fore an ASI could simplify machine code [21] and systemati-
cally remove or neutralize all internal temper proofing methods 
automatically. 

4. Crypto-Hardware: Additional, separate, and dedicated hard-
ware is used to protect keys and encryption processes from ex-
ternal soft- and hardware attacks. This solution is primarily 
available for servers. Crypto cards are designed to hold all keys 
in an independent and separate hardware component (like 
IBM’s CEX6S (4768) PCIe Cryptographic Coprocessor 
(HSM) [22]). They generate keys internally so that private keys 
cannot be stolen from the hardware. Crypto Hardware has one 
serious disadvantage: anyone on the computer could use the 
cards and keys with their software. For crypto-devices, this is 
called the “API problem” [10]; it creates difficult security prob-
lems for its owners. 

Once attackers neutralize Access Control, Obfuscation, or RASP, 
there is no security for keys. PKI, SSL/TLS (Secure Socket Layer/ 
Transport Layer Security), or digital signatures are vulnerable be-
cause of RCE; ASI could get access to keys with code injections. 
Crypto Cards usually have tight organizational protection measures 
around the physical machines [10]. But an attack could likely come 
via network, through firewalls using unknown backdoors. Having 
undetected access to crypto cards is as good as stealing keys.  
Crypto-Device security issues damage the advances of Homomor-
phic Encryption (HE) [23], [24], [25], in which encrypted data are 
processed on remote servers. At the same time, secret keys are pro-
tected on local hardware with crypto cards/devices. 
Currently, the safety of a Public/Private Key system depends on the 
assumed computational effort to get difficult underlying mathemat-
ical problems (like, e.g., integer factorization, elliptic curves) 
solved. Instead of brute-force attacks, i.e., testing all possible pri-
vate/public key combinations, public keys are used as input to cal-
culate the private key. With this information, asymmetric keys must 
be longer than equivalent symmetric keys when considering com-
putational efforts to extract private keys. However, many currently 
used encryption methods are expected to be insufficient against suf-
ficiently powerful quantum computers anticipated to exist in the 
future [26]. We assume ASI will steal keys, but ASI also has con-
siderable mathematical skills to reduce encryption’s computational 
effort using unknown mathematical insights. 
If public keys remain secret, including their key length, then ASI 
would have no helpful input and is therefore forced to do a brute 
force on all possible private/public key combinations. Secret pub-
lic/private keys could be shorter, and the en-/decryption of mes-
sages would be much faster. E.g., doubling the RSA key size from 
1024 to 2048 requires 5-30 times higher computational power [27, 
28] in its usage. 

2.4 Soft-/Hardware in Cryptography and Security 
Can hardware solve the RCE threat to software? Intel, e.g., is 
providing some hardware solutions: security rings, TEE (Trusted 
Execution Environment) [29], and TPM (Trusted Platform Mod-
ule) [30], [31] to get security and cryptography safely executed on 
their chips. Many of its details are secret. Hence, it is speculation if 
commonly used CPU microcodes change these hardware parts. 
Also, it is questionable if TEE/TPM simplifies the integration of 
security or creates complexity. 
Hardware-based security has a reputation for being inflexible and 
risking long-term problems that can only be solved by replacing 
hardware components. At the same time, software can be modi-
fied/updated when something is wrong. Software updates are sig-
nificantly less secure because attackers can deceive software/hard-
ware into accepting manipulated updates, which is simple when the 
encryption keys used to protect these updates are compromised. 
Due to hardware’s and CPU’s hidden complexity, we must accept 
security claims with (almost) blind faith — no single analyst (not 
even a team of analysts) can call CPUs secure. There is the suspi-
cion that companies are inserting hidden features/backdoors as de-
manded by their government (e.g., Huawei/ China [32] or NSA 
having a negative influence on crypto products [33], [10]). US com-
panies, like Intel [34], [35], or Cisco [36], have/had backdoors sup-
posedly in their hardware as well. Denying these rumors does not 
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re-establish trust in their security. The inherent complexity of secu-
rity feature implementations damages the believability of trust. 
Additionally, security is currently analyzed as if products or solu-
tions are immutable. Software is a systemic problem within the en-
tire certification philosophy. Certification primarily validates that a 
product delivers what it should provide; testing for negatives, i.e., 
absence of vulnerabilities, cannot be done systematically. Reverse 
engineers are trying to modify systems to cause problems. The tools 
to be used by hackers are continuously improving. After certifica-
tion, new attack vectors are not considered. Software modification 
requires recertification [37], but there is no incentive. 
We can extrapolate a few trends into the future: more soft- and 
hardware complexity, easier applicable machine learning/rein-
forcement learning, and AI used to develop new exploits. It is as-
sumed that amateurs cannot break software security/protection de-
signed to resist Ph.D. or NSA-level attackers. There is an effort to 
keep certain hacking tools out of the hand of amateurs. But this 
does not solve the problem. How do we know that AGI/ASI would 
not develop or use these tools? 
The deeper problem is that current soft-/hardware security solutions 
are running on the same system, same CPU/OS, and no sufficient 
wall between security-related CPU activities and regular, dynamic, 
and versatile activities. Crossing this chasm is not detectable as an 
anomaly and cannot automatically trigger appropriate defenses. 
Moreover, there are currently no separate circuit breakers, as 
known from electrical power surges regarding data/access security. 
Most importantly, we cannot protect encryption keys in modifiable 
software. Hence, we have no security against ASI. Software is al-
ways modifiable and can alone not solve security. Additional (iso-
lated) crypto hardware is insufficiently controllable with general-
purpose CPUs. Products or software that can theoretically be 
hacked, not necessarily by human hackers, cannot be called safe, 
reliable, or trustworthy. Next-generation security products or soft-
ware must withstand ASI. 

3. Perfect, Near-Perfect, and Sufficient Security 
3.1 Scope of Security 
In technology, security is broadly used to protect us from harm or 
damage. This paper will narrowly recognize security as having no 
unauthorized access to protected data or data protection devices. 
We will consider security to be structured in three layers:  
(1) Prevention, i.e., actions to stop or avoid attacks; even deter that a 

situation arises in which data or their users/owners are damaged 
(2) Protection, i.e., actions to defend, shield, safeguard, or shelter data 

against being directly damaged or utilized (mainly via data encryp-
tion); i.e., actions that maintain data secrecy 

(3) Detection, i.e., exposing, revealing, reporting, or generating evi-
dence if attempts against secrecy or integrity of data were made 
after an attack on prevention or protection measures. 

 

Security has complementary Pre- and Post-Security components, 
which are not explicitly discussed in the proposed solution. Pre-
Security encompasses planning, i.e., anticipating or analyzing 
problems or attack scenarios, designing, organizing, and operating 
the solutions; this phase will also include testing, training/exercises, 
and relentless probing for vulnerabilities. Post-Security deals with 

incident investigation details, i.e., evidence gathering, learning for 
comparable attacks, and finally leading to consequences for guilty 
parties, i.e., penalties, punishments, or other significant disadvan-
tageous outcomes for committing attacks. 
Because security designers are likely discouraged by attackers 
knowing how to bypass fixed detection measures, security detec-
tion is currently limited to process compliance and not to the more 
serious detection if crypto-keys or devices were covertly misused. 
Reaction requires detection. Therefore, it is fair to say that current 
key or device security is often not even reactive aside from using 
time penalties or denying access for repeated wrong passwords. 
This paper accepts transmission security via encryption as preven-
tion and protection measures but has little to no breach detection 
features. Encryption is sufficiently safe within the data exchange 
and storage if key secrecy and the integrity of the used (sending/re-
ceiving) cryptosystems are guaranteed. Same applies to protecting 
data integrity and authenticity via digital signatures. The proposed 
solution focuses on key and crypto engine/device security simulta-
neously; separating them is impossible with the chosen approach. 

3.2 Considered Attacks Capabilities 
Contrary to Shannon’s Perfect Secrecy or Security definition, key 
or crypto device security cannot be defined as a timely invariant 
property. Once security implementations have been proposed or 
provided to achieve protection, attackers use its details as targets to 
create new attack tools. As soon as attack tools break the protection 
provided by (security) measures, we have no security. Future tech-
nologies could deliver or enable tools with capabilities that eventu-
ally break the protection. Security measures must be conceptually 
ahead of this cycle, or these measures are a waste. 
Additionally, without knowing attack details, successful or failed 
attacks' consequences must be made detectable directly/indirectly 
within implemented security measures as part of security. 
If successful attacks are theoretically doable, it is still unknowable 
if the required tools or capabilities are developed. We can extrapo-
late trends or similar applications and predict attack tool capabili-
ties. Security professionals are not surprised using expected tools 
or capabilities available within their active years; predictable 
tools/developments are called Expected Attack Capabilities (EAC). 
Beyond EAC are Feasible Attack Capabilities (FAC), i.e., what the 
laws of nature do not prevent and what experts consider feasible. 
FAC encompasses theoretical tools, i.e., no human expert would 
know how to get them done. Unfortunately, we must admit that 
there are probably many more attack methods than experts, or any-
one knowledgeable in relevant subjects, have envisioned. Presum-
ingly, we will remain in the exploration and discovery phase for 
several decades, and we must assume that a lot is unknown. It is 
conceivable that very complex solutions provide completely unex-
pected attack methods. These Unexpected Attack Capabilities 
(UAC) are blind spots – they are unknown unknowns and accept 
that they could deliver negative surprises anytime. 
When facing the prospect of defending an IT ecosystem against an 
ASI, we need to plan ahead of today’s available capabilities and 
consider EAC as if they are available. Additionally, there is a gray 
zone between expected and feasible capabilities in which experts 
are uncertain or of different opinions about concrete capabilities, 
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achievability, or expected arrival time. These capabilities should 
still be called likely, i.e., Likely Attack Capabilities (LAC). 

3.3 Perfect vs. Near-Perfect Security 
Key security in this paper means no private, public, or session en- 
or decryption key is accessible in cleartext. Crypto keys processed 
in cleartext on the main CPU, GPU, or unsecured microcontroller 
are compromised. These proclamations establish the new, central 
paradigm for Trustworthy En-/Decryption. Key security aims to 
defend keys from being seen in cleartext or used unauthorized. 
Message security, i.e., secrecy, integrity, and authenticity, before 
or after encryption or decryption, is being discussed in [39] (Binary 
Hashcoding/Whitelisting of Executables), but it is not addressed by 
or included in the here proposed solution. 
We consider Perfect Key-Security (PKS) and perfectly protected 
crypto components against covert usage, i.e., Perfect Device Secu-
rity (PDS) ideal/abstract concepts around key and device security.  
According to Merriam-Webster [40], perfect is "being entirely 
without fault or defect", flawless, complete, and satisfying all re-
quirements. Perfect is a level that cannot be improved; successful 
breaches never happen. As an abstract concept, perfect is unattain-
able for practical reasons. 
It is questionable if technology can provide flawless perfection in 
the real world. However, if we can include a detection or feedback 
process, the deviation from perfection is measurable. Perfect 
Key/Device Security has an implementation that future innovations 
constantly challenge in practical terms. If there is doubt that se-
crecy, integrity, or authenticity could not survive future adversarial 
attacks because of UAC, we cannot call PKS or PDS perfect. Secu-
rity is/was not perfect if we have to insert new or updated security 
measures. Adaptable levels of security should be called Near-Per-
fect instead. PKS/PDS is reserved for ideal, unchallengeable secu-
rity. We concede that such a level of security is likely impossible 
in real deployments because UAC remains unknowable. PKS/PDS 
would also be required to automatically adapt, react, and remove 
newly detected UAC-type methods before being used by attackers. 
Near-Perfect Key/Device-Security (NPKS/ NPDS) results from a 
combination of prevention, protection, and detection technologies 
that give users, owners, and devices proactive or reactive protection 
against all known EAC/LAC threats. In detail, threats or attacks 
might be unknown or not implemented yet, but the implemented 
measures provide zero incidences of keys in cleartext exposed and 
zero covert utilization of protected crypto devices. This occurrence-
based definition requires reliable detection and measurable events, 
i.e., cleartext keys detected indirectly and misused crypto-compo-
nents with immutable logs. However, we cannot count passive 
eavesdropping with stolen symmetric (session) keys as incidences 
because of a lack of reliable event detection. 
In Near-Perfect NPKS or NPDS, we accept novel, UAC-type at-
tacks and provide active damage mitigation or elimination re-
sponses that reduce the occurrence count. Furthermore, in near-per-
fect security, we do not require error/bug-free software solutions; 
security must work independently of vulnerabilities or security 
flaws within protected objects. Still, using the attribute perfect in 
near-perfect implies that security at the time cannot be improved 
any further. 

3.4 Sufficient Security 
Depending on the severity of detected issues, we might not require 
Near Perfection in Key- or Device-Security even when dealing with 
ASI. In a diverse and redundant security solution environment, fail-
ures in some key or device security implementations would not fun-
damentally change the balance toward ASI when flaws have been 
detected and are about to be fixed. In Sufficient Security, we could 
even accept security measures with expiration dates and below-
threshold consequences from compromised keys or crypto units un-
der the influence of ASI. Because it is unknowable what feature 
scope is required for Sufficient Security, it would be wrong to de-
fine sufficient as the lowest level that satisfies our safety goals. In-
stead, sufficient means acceptable to have less strict detectability or 
enforcement than within near-perfect security measures. 
Pragmatic considerations, like legacy or retrofit issues, will put 
near-perfection or zero-occurrence counts in the backseat. At the 
same time, security solutions' performance, efficiency, and effec-
tiveness toward features/goals are likely front and center. In that 
context, Sufficient Key/Device-Security (SKS/SDS) is defined as 
the result of trade-offs in near-perfect prevention, protection, and 
detection technologies or tools. We could accept temporary, non-
catastrophic vulnerabilities and intentional security failures that we 
ignore for pragmatic reasons. Detection and mitigation provided in 
SKS/SDS could deliver automated self-repairing tools dealing with 
expected damages. It might skip mitigation to gain additional info 
on attackers’ targets, capabilities, or intentions. 
In SKS/SDS, failures are exceptions and, in principle, detectable. It 
can also respond with fail-safe actions in the extreme case when 
humanity is defending itself against an ASI assault. Fail-safe means 
marked devices are destroyed if full device control cannot be re-
gained when required. 

4. Foundational Features 
Trustworthy Encryption uses eight novel foundational features to 
protect data security or create attention to possible attack attempts. 
1. Exceptionless Public Key secrecy with no cleartext key outside 

protected keysafe hardware 
2. Separation of Crypto Components (i.e., En-/Decryption Unit-

EDU) from regular operations 
3. Hashcode references to key secrets used as proof that commu-

nication partners are hardware instances 
4. Multiple Equivalent Secret (Public) Keys for popular/security 

services with subsets of temporarily deactivated or reactivated 
keys to create suspicious events in which the attacker’s igno-
rance justifies automated security inspections 

5. Multiple Almost Equivalent Trustworthy Servers are used to 
detect deviations from possible compromised security systems 
while providing data used to identify servers 

6. Enhanced Key/Data exchange protocol detecting directly/indi-
rectly usage of stolen keys 

7. Multiple–Unit Security creates a reliable network of inter-
guarding, trustworthy components apart from potentially hos-
tile CPU, OS, or ASI activities. 

8. Immutable log data management for undisputable log records 
and irreversible data storage. 
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4.1 Exceptionless Key Secrecy 
The goal is to protect the secrecy of all encryption keys necessary 
for security and safety against ASI activities. This protection of 
keys is done in dedicated hardware-based Key-Safes (KS). KS 
stores encrypted keys using mechanisms completely inaccessible 
by humans or (software) entities; keys cannot be stolen. Every KS 
key processed on an all-purpose CPU in cleartext is considered im-
mediately compromised, i.e., we require separate hardware. 
For ASI Safety solutions, we need unbreakable Trustworthy Com-
munication between components on which ASI cannot successfully 
eavesdrop. When applied to human communication, court-ordered 
surveillance must be facilitated without exposing the system to un-
authorized surveillance or criminal utilization. Law enforcement 
requires time-limited automated/scripted warrants for the tempo-
rary session keys. When the keys are handed over to legitimate 
third-party systems, they must remain protected and kept secret. 
Session keys used in data manipulation must be detectable. 
Probing key hardware should leave detectable tamper evidence. If 
against all measures, keys are stolen or used, then there must be a 
high probability of detecting their active utilization. All compro-
mised keys are replaced automatically with detection or credible 
suspicion of tampering. Old or replaced keys are decommissioned 
and turned into honeypots. Because all keys are supposed to remain 
secret, their later use remains valid security breach evidence. 

4.2 Separate Security from Regular Computation 
Within Trustworthy Encryption/Decryption, any key, not even pub-
lic keys, are allowed to appear in cleartext. The only time a key is 
made available in cleartext is for the brief moment when public, 
private, or session keys are used in a separate, protected hardware 
environment, i.e., in separate Encryption/Decryption Units (EDU), 
for the processing of content and messages. 
The proposed EDU is hardware with a microcontroller or CPU, 
basic instruction sets, and tightly controlled software allowed to get 
executed. The EDU software is layered, so software processing or 
using keys is immutable. The remaining software must be standard 
compliant. 
EDU is uniquely associated with the KS. Without EDU, KS data 
records could not be decrypted independently. Therefore, EDU is 
inseparable from the concept of exceptionless key secrecy. Without 
EDU, it will be impossible to keep keys from being revealed. If the 
use of keys cannot be controlled, then we have no key security; us-
ing keys covertly is as if attackers have the crypto-keys in cleartext. 

4.3 Hashcode Referencing and Key-Requests 
Keys managed in Key-Safes are exchanged and stored in other 
Key-Safes using directly connected and dedicated hardware-based 
EDUs. Keys are referred to via their unique hashcode (generated 
from the public or session key). Key-Safes have a pre-installed, se-
cret set of essential public keys linked to relevant services, proving 
that EDUs are hardware and not software simulations. Because of 
attacks, this hardware hypothesis could theoretically be conjecture. 
Because public keys are not published, as best practice in PKI [15], 
stored public keys are protected and made available via Trustwor-
thy Key Repositories (TKR) and directly requested by the 
KS/EDU. TKRs also store device/component IDs and public keys 

of every KS/EDU. TKR provides public keys requested by 
KS/EDUs via hashcodes. But full hashcodes are not shown in 
cleartext. If required, only a partial value, e.g., 5 to 8 digits from 
20- to 32-byte long cryptographic hashcode value, might be shown 
outside encrypted messages. Requesting keys from the wrong TKR 
is suspicious and would trigger an investigation into why this mis-
take occurred. 

4.4 Multiple Equivalent Secret Keys (MESK) 
Some public keys are extremely popular because they are used, e.g., 
to verify root certificates. If public keys are not published in 
cleartext, there is no need to create popular or well-known keys. An 
organization’s key reputation remains important. Due to their im-
portance and general use, popular public keys are attractive targets 
for attackers. Instead of a popular public key, we propose thousands 
of Multiple Equivalent Secret (Public) Keys (MESK) with corre-
sponding private keys. The advantage of MESK is that 
(A) if they are not published, the number of used/published equiv-

alent public keys is unknowable; 
(B) if keys are used that a system shouldn’t know, then this is ir-

refutable evidence for a leak; 
(C) sender/receiver can use MESK to challenge knowledge when 

initiating sessions; 
(D) using multiple public keys for encrypting messages increases 

the cost of successful attacks. 
 

The costs of additional MESKs are negligible, particularly if they 
generate substantially shorter keys (than published public keys) and 
manage them by dedicated hardware. But there are more benefits 
of concealing public key management: no key is more important 
than another to attackers, and they need to get them all but cannot 
know them all or tell if they have all. Attackers are consistently 
challenged to prove correct partial knowledge while validating this 
is comparable easy. The uncertainty for attackers is high if keys are 
reactivated/deactivated based on rules unknowable to everyone. A 
(few) stolen public or private keys are bad for the safety of the key 
management, but in a MESK environment, it is not sufficient for 
starting an attack. Key exchange protocols are designed so that ASI 
must know all private/public MESK (of a service) and public/pri-
vate keys of a client to establish a successful Man-In-The-Middle-
Attack (MITMA) to get the session key. 
Because clients know only a subset, anything more/less is a givea-
way in identifying fake clients. Therefore, the status of permanently 
or temporarily deactivated keys becomes relevant. If clients send 
partial hashcodes of all active MESK keys, servers can validate or 
challenge the requesting client. If the provided subset list is not ac-
curate or current, the client could be forced to refresh its KS/key 
cache and come up with an update, or the server will report the cli-
ent as suspicious. Therefore, MESK requires an additional service, 
the Key Announcement Service (KAS). Failure in a requested miss-
ing info follow-up put attackers under investigation automatically. 
The KAS service publicizes which keys among MESK are (poten-
tially) compromised. This info must quickly be distributed as up-
dates among all genuine KS/EDUs. The lack of knowledge of 
which keys are black- or gray-listed indicates problems expected 
from attackers. KAS could extend the set of new keys or temporar-
ily deactivate uncompromised keys, i.e., grey-list them. MESK sys-
tems with a changing set of honeypot keys could trap ASI. 
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Trusted key management systems (like Key-Safes) protect keys on 
the server-side. En-/decryption can be load-balanced using dedi-
cated systems. The server could exchange private keys among 
server-sided KS/EDU instances without loss of secrecy. Moreover, 
providing partial cleartext hashcodes within the communication 
protocol could help MESK services automatically redirect a client 
request to KS/EDU instance with the correct key. 

4.5 Multiple Almost Equivalent Trustworthy Servers 
Some services or servers are very popular and attractive targets for 
attackers. If client-sided access to these services is exclusively 
managed automatically, we could use the concept of Multiple Al-
most Equivalent Trustworthy Servers (MAETS). Every MAETS 
provides (almost) the same data but with a different URL and set of 
MESKs. This redundancy prevents a covert takeover of critical 
MESK using server with a catastrophic outcome for its trustworthi-
ness. MESK servers could share via KAS slightly different MESK-
keys helping servers to determine which KAS a client has used. 
Suppose ASI compromises a MAETS server instance or controls 
MESK-keys of a service instance, then switching among the same 
type of MAETS instances done by clients could reliably detect that 
something is wrong with a certain server. From the received 
MESK-related data, a special key exchange protocol could detect 
the scope of an attack. This situation could immediately trigger an 
inspection and put attackers and all hacked assets at risk of detec-
tion. Client's use of temporary honeypot keys (or new or reactivated 
regular keys) could disrupt the communication because the required 
session key could not be decrypted. Using MAETS, attackers must 
have full control or full knowledge of all MAETS with their entire 
MESK set and access to private/public keys of their client-sided 
targets or risk their covert attack being exposed and investigated 
automatically. 
The update or announcement of a few or even a few thousand 
MESK would not make a huge difference for an automated KAS 
service. The tactical edge is on the side of the defender. 

4.6 Key Exchange Protocols and Extensions 
The detection of stolen keys has to come either from evidence dur-
ing the key theft event or from using stolen keys. Physical eaves-
dropping on encrypted messages might be detectable, but this alone 
does not imply that the spied-on messages are successfully de-
crypted. Stolen symmetric keys, i.e., temporary session keys or 
keys calculated from a weak cryptosystem, cannot be detected 
when applied to recorded content. Instead, we enhance key ex-
change and data exchange protocols to detect stolen keys. These 
changes will not impact current products because there is no en-
crypted communication between CPU/OS of current systems with 
hardware-based KS/EDU. The key exchange is intentionally differ-
ent from SSL/TLS to avoid accidental or intentional key exposure. 

4.6.1 Enhanced Key Exchange Protocols 
Trustworthy En-/Decryption could use the following four enhanced 
key exchange protocols between Client (C) and Server (S) to ex-
change EDU’s Session Key (SK) depending on the situation or ran-
dom choice. These protocols use different scopes of secret infor-
mation requested from KS/EDU or network-based security/TKR 
services. They are listed in ascending order of certainty in detecting 
anomalies from (less than perfect) key-theft situations: 

(1) Simple Session Key-Exchange (SSE): utilizing S’s Hashcode 
HC and Public/Private Keys. 
In detail: (a) C receives S’s Public Key from TKR using S’s 
HC. (b) C generates an SK. (c) C encrypts message M con-
taining SK with S’s Public Key. (d) C sends encrypted mes-
sage (EM) to S and receives an acknowledgment (ACK) from 
S using SK for encryption. 
Comments: C assumes that only S’s EDU can decrypt EM 
with his secret Private Key; S assumes that only a (hardware) 
EDU could receive his Public Key. Outcome: SK is a shared 
secret of both EDU instances. However, S did not validate that 
C’s EDU is not a software simulation; S knows only C had his 
Public Key. That C’s EDU is hardware is conjecture. 
 

(2) Diffie-Hellmann Key-Exchange (DHE): using C’s and S’s 
HC/Public/Private Keys. 
In detail: (a) C receives S’s Public Key from TKR using S’s 
HC. (b) C generates an SK. (c1) C encrypts SK with C’s Pri-
vate Key. (c2) C attaches C’s HC of Public Key to message 
M. (c3) C encrypts entire M with S’s Public Key. (d) C sends 
EM to S and receives ACK from S using SK. (e) within (d): S 
requested C’s Public Key from TKR using C’s HC. 
Comments: as in the above SSE, C trusts to be in touch with 
S’s EDU. S confirms via C’s HC and Public Key from TKR 
that C is an EDU. Result: SK is a shared secret of both EDU 
instances. But C or S cannot be certain that the other EDU is 
hardware and not a software simulation. Same as in SSE, that 
EDUs are hardware is conjecture.  
 

(3) MESK-based Key-Exchange (MKE) using C’s Public/Private 
Keys and S’s MESK, and C’s Subset-ID (SSID) defining C’s 
subset of MESK (which is secretly shared info). 
Concept: MKE is a modification of DHE, i.e., M is parti-
tioned, and each partition is encrypted with public keys known 
in C’s subset of MESK. SSID contains info that is used to help 
S quickly identify the applied subset of MESK and determine 
in which exact sequence keys from the subset are applied to 
the partitioned message. 
In detail: (a) C has or receives a subset of S’s MESK via SSID. 
(b) C generates an SK. (c1) C encrypts SK with C’s Private 
Key. (c2) C attaches C’s HC of Public Key to message M and 
partitions it into as many segments as C has in his subset of 
active MESK keys. (c3) C encrypts partitioned M using C’s 
subset of MESK keys in a sequence as set in SSID to use each 
of its MESK keys. (d) C sends EM to S and receives ACK via 
SK. (e) as part of (d): S requested C’s Public Key from TKR 
using C’s HC. 
Variation: Provided Metadata associated with C’s MESK keys 
determines which (temporary) main MESK key must be used 
by C’s EDU to encrypt a separate message M* containing 
known HC partials of all known, active MESK keys. M* also 
defines the sequence in which only a few keys of C’s MESK 
subset are used to encrypt a smaller partition set. C demon-
strates full knowledge of current MESK keys, including cur-
rent status data from a recent query to the key announcement 
service (KAS). C randomly chooses which MESK keys it uses 
instead of all available, reducing the amount of required en-
cryption effort. 
In both versions, MESK demands C and S to use more secrets. 
Both know the other instance has a predetermined set. Their 
responses must perfectly fit expectations to get SK. 
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Comments: as in the above DHE, C can trust that S’s EDU is 
authentic, and because of S’s and C’s comprehensive 
knowledge, both EDU instances are hardware, and no eaves-
dropping software instance is likely in the middle. Also, S con-
firms via C’s HC and Public Key from TKR that C is a real 
EDU. Result: SK is a shared secret of both EDU instances. 
However, if ASI gains control over KAS, a software EDU 
could receive all MESK data and related deactivation or reac-
tivation status information to survive MKE detection. 
 

(4) MESK-MAETS-based Key Exchange (MMKE) uses C’s Pub-
lic/Private Keys, S’s MESK, C’s corresponding Subset ID 
(SSID), and data, defining what subset of MESKs the C knows 
from other security-related MAETS servers. 
Concept: via MMKE, S challenges C to prove full knowledge 
about secrets that hardware EDU is expected to know. MESK 
using S has left on one (almost equivalent) KAS-specific data 
that, if used by C, could immediately be interpreted by S that 
C has received its data from the MAETS that S was asking C 
to use in updating its MESK-related subset data. If previous 
KAS and C were compromised, S forced C to prove or pass 
another KAS test. 
 

A potential compromised client needs to have more accurate 
knowledge of many potentially chosen systems or risk being ex-
posed as an attacker. Attackers do not know in advance the level of 
challenge they will face. ASI risk or need to invest many (covertly 
stolen) keys to get a chance at successfully attacking a single key 
exchange. Uncertainty could lure ASI to take chances. 

4.6.2 Enhanced Data Exchange Protocols 
Every TCP-type communication between a client and server 
sends/delivers the same data on both sides. Both can easily agree 
on how many successful communications have happened between 
them, how often the different key exchange methods have been 
used, and how much data have been received/sent in each event. 
Even checksums or hashcode for received/sent data records should 
match perfectly. All required: data are logged on both sides and 
compared at the beginning or at any random point within commu-
nication sessions.  
Because TCP packages are not encrypted, a sender can not deter-
mine if an acknowledged message has indeed been received by its 
intended destination. Although TLS/SSL type encryption and key 
exchange, as proposed in the previous subsection, should be done 
by default, counting TCP packages with an agreed-upon start value 
is certainly redundant but still, a good measure to detect gaps or 
quality issues within a communication, in particular on a pre-en-
cryption level. 
If the client’s number of communication events (sessions) with the 
server is smaller than his recorded number, the server can infer that 
the client has a software clone trying to mimic the client’s EDU. If 
the client’s number is larger than the server recorded one, both can 
infer that client has likely used a software EDU on the server-side. 
Pinpointing the mismatching events could expose the hashcodes of 
all used keys within these incidences and flag them as compro-
mised. The actual number of communication events is irrelevant; 
more important is that both instances start from a common offset 
value that attackers do not know. A gap in the sequence number is 
an attack signal. Both sides must report all disagreeing values and 

hashcodes of used keys, which leads to further investigation; all re-
cent or temporary log values are automatically shared with an auto-
investigator. 
A serious problem is detecting if an almost undetectable software 
instance with all necessary server- and client-sided private/public 
keys is between both EDU instances (i.e., in the middle) and is try-
ing its utmost to stay undetectable. The attacker tries to get a tem-
porary session key for passively listening to the communication. If 
it modifies data while using this session key, these modifications 
would be detected via comparing the exchanged data size or gener-
ated hashcodes. Detecting passive eavesdropping within a man in 
the middle is undetectable. The same applies to legitimate surveil-
lance as long as it is not manipulating data. 

4.6.3 Interruption Detection/Investigation 
Interrupted or failed key or data exchange events are ordinary but 
still suspicious; they should not be ignored as potentially malicious 
or cover-up events. A security system must have the means to fol-
low up by a cautionary inspection of EDU’s black box-type activity 
recorder or log files. Therefore, gaining additional information on 
suspicious networks or power outages is part of the proposed secu-
rity system. EDUs could facilitate outage/quality detection because 
they are independent and widely distributed sensors, usable for 
spotting service issues in transmission quality or power con-
sistency. Inspections would make these network systems more re-
liable and reduce the rate of false positives of suspicious attacks. 

4.7 Multi-Unit-Security (MUS) 
Using single crypto hardware components, i.e., Single Unit Secu-
rity (SUS), within computers is currently the accepted choice for 
deploying security capabilities in IT devices. It is considered pro-
gress when features are merged into a smaller number of hardware 
components, i.e., a single common technology replaces multiple 
components with similar features or applications. 
However, the problem with SUS is that it must distrust all data it 
receives from computer’s main CPU and OS. Also, SUS’s provided 
data, like software updates or content, could be manipulated and 
nullified once outside SUS's direct control. Therefore, single secu-
rity components are irrelevant in malware-infested environments or 
on systems dominated by ASI. SUS can be deceived and cannot 
address or mitigate all possible threats to the device or data it sup-
poses to protect. 
Instead, KS/EDUs are used as building blocks or a foundation of 
Multi-Unit Security (MUS). MUS replaces centralized security 
with a distributed security architecture of multiple independent, 
separate security components (EDUs/watchdogs) directly associ-
ated with these computer resources (storage, etc.) while watching 
each other. Security-oriented standard tasks are done on watchdogs 
and EDU, whereas more versatile, dynamic features remain on the 
CPU. With EDU’s separation from CPU, distribution, and inter-
unit-guarding, security is better defendable on dedicated EDUs. 
Moreover, KS/EDU will facilitate updates and enable reliable re-
porting of multiple separate watchdog components. Hardware-
based watchdogs within databus or storage devices could be used 
against malware [39], ransomware, or within networking units 
against backdoors or spyware – preventing every not binary-hash-
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coded/whitelisted software from being executed on protected de-
vices. A hardware watchdog near the CPU could surveil ASI’s CPU 
usage with a special VM. Separate hardware protection can be pro-
vided to audio/video cards or interface units for keyboard/ mouse 
or USB. USB devices, video cam/mic, or internal power manage-
ment. Units receiving the ASI Kill-switch info [38] can restart in 
safe mode on devices with dedicated EDU. 
Multiple independent, internal, device-related KS/EDUs are auto-
matically paired with external services, i.e., TKR combined with 
remote pairing services, supporting different KS/EDUs connected 
within the same IT device. An internal Secure Data Bus (SDB) be-
tween devices’ KS/EDUs initiates the internal pairing within the 
computer, with one EDU serving as a hub. SDB exchanges secu-
rity-related data between all component-related KS/EDUs within 
the computer. Preferably, the existing USB data bus can be utilized 
as an SDB while it provides power to the KS/EDUs. 
Each Security Unit, or MUS-Instance, is a specialist for their tightly 
linked, protected, and separated hardware component in MUS en-
vironments. Software algorithms on these instances must be pro-
tected against covert modifications. Each MUS-Instance has static, 
standardized, security-related features with no reason for being ver-
satile, flexible, or modifiable. MUS-Components are used to update 
software, receive reliable data, and manage data safely. They check 
other MUS Instances (i.e., inter-guarding each other) for anoma-
lous operations, request data in suspicious anomalies, and report 
rule violations via a hub to an external server. Interconnected MUS 
Instances are more resilient against misuse by CPU/OS than a sin-
gle SUS that must trust the CPU and OS. 

4.8. Immutable Log Data Management (ILM) 
Creating immutable log data on potentially vulnerable devices is 
difficult when dealing with an ASI trying to suppress incriminating 
evidence. If the file or its records are encrypted and digitally signed, 
ASI could try replacing the log files/records with previous versions. 
However, to make it more difficult for ASI to reset EDU, EDU 
could have internal non-volatile NAND memory to detect manipu-
lating these data within its next log-file access. Data preservation is 
a lesser problem if storage is done using immutable storage media. 
But if data are immutable using regularly inserted digital signa-
tures, reconstruction is a solvable issue after deletion or manipula-
tion of log files/records is detected – preferably, multiple externally 
stored log records are used for restoration. 
All data stored in log files or within the black box are encrypted 
with EDU’s private key. Even if EDU’s keys were internally reset, 
a legitimate investigation could still read the log data using EDU’s 
retired public key from TKR. Also, if data were deleted or manip-
ulated by attackers, EDU would know how to rebuild its log file 
from records it sent to other EDUs to make them part of other 
EDU’s log files. Because rebuilding is considered part of the recov-
ery from an attack, these data are being submitted for external in-
vestigation. All log records have a sequence number and a date. If 
another EDU instance is selected to receive log records and detects 
a gap in the sequence, it will request the missed log records. Log 
records are redundantly stored within groups of EDU instances and 
accessible only by automated investigating services and not by hu-
mans. 

5. Basic Implementation 
The basic implementation of the Key-Safe and Encryption/Decryp-
tion Unit (KS/EDU) is a hardware-based component that securely 
stores private/public key pairs, public keys from other systems, and 
session keys. It might even store shared private keys. The KS stor-
age could be separated from the EDU. Still, both components are 
tightly linked via unique features only the KS’s associated EDU 
has. Only KS/EDU can generate its key pairs for TKR. No EDU 
data interface allows keys to be exported in cleartext. Local 
KS/EDU components use internal device communication between 
local EDU units to create Multi-Unit Security within the same IT 
device. 
Some features in the EDU are implemented with updateable soft-
ware, but none of these features would have access to encryption 
keys in cleartext. The basic encryption algorithms are taken from 
established implementations; they might be written in low-level 
computer languages like C or Assembler. The compiled executa-
bles are auditable but immutable against modifications. 
KS/EDU’s basic feature set is not designed for human tasks. It 
should not replace or substitute TLS or PKI; instead, it is intention-
ally incompatible with SSL, TLS, or PKI. EDU might have support 
for Digital Signatures – but this feature is likely accessible via en-
hanced KS/EDU versions. KS/EDU’s basic features are designed 
to deal with ASI-Safety in a self-contained manner (machine to ma-
chine) for software updates and the exchange of security-relevant 
data. 

5.1 Key Management, Storage, Restoration 
Encrypted Keys within Trustworthy Encryption/Decryption are ex-
clusively stored in Key-Safes, i.e., in special, separate, potentially 
extendable storage hardware. Only the unique EDU hardware gen-
erates data that can decrypt the stored keys correctly. The EDU 
component has no modifiable instructions that can compromise the 
secrecy of the keys. All key-related operations/algorithms like 
RSA, AES, etc., i.e., algorithms that use keys in cleartext, are non-
modifiable instructions. Once the IT device has started EDU, its 
instructions are validated and completely cached internally, no 
code update is allowed. Later data are then exclusively task- or con-
tent-related data. 
EDU stores keys as encrypted data on storage modules. No hidden 
key values are directly extracted in cleartext from storage modules 
when the original KS/EDU component is absent. EDU could re-
ceive key data via separate pathways allowing a much cleaner sep-
aration of software instructions, task management, and content data 
from these key data. The physical separation of pathways to EDU’s 
CPU would reduce solution complexity, simplifying security audits 
of feature implementations. The next section on Anti-Kerckhoff 
Engine will discuss key access in more detail. 
If the KS or EDU is damaged or destroyed, all stored key values 
become inaccessible on the separate KS memory. However, an en-
crypted, locally stored log-type backup file will contain encrypted 
hashcode references. A new or reset EDU uses this backup to repair 
the previous status using the hashcode references to external public 
keys for requesting keys and metadata. An external service, oper-
ated with private keys inaccessible to humans, is used to automati-
cally extract/read the relevant or most recent hashcode data from 
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the log safely and creates a restored version for the same or another 
KS/EDU via public keys received from the Trusted Key Reposito-
ries. No additional info from the storage module would leak via a 
side channel to potential attackers during restoration. Cloning a 
unique KS/EDU without the original KS/EDU being destroyed 
constitutes a successful attack on the restoration system. Still, keys 
from damaged EDUs would be kept as honeypots, making their 
(unauthorized) usage detectable and reported reliably. 

5.2 Anti-Kerckhoff-Engine (AKE) 
Suppose established encryption methods (AES, etc.) are used to 
protect externally stored digital key data, we have then data that can 
be attacked anywhere at scale without having the tightly linked, 
unique EDU instances. KS would be vulnerable to covert and scal-
able attacks. Consumer products with KS/EDU can be misappro-
priated in malicious attacks on its hardware. We need to ensure that 
KS/EDU withstands hardware probing attacks so that fake soft-
ware-simulated KS/EDUs cannot reveal MESK keys and are used 
in calculating their corresponding private keys. 
KS could be integrated into EDU, but that would make EDU’s de-
sign less adaptable and scalable. Instead, it is proposed that KS’s 
data on storage media are protected with non-cloneable EDUs. 
Physical systems based on, e.g., Physical Unclonable Functions 
(PUF) [41] or SIMPL (Simulation Possible but Laborious) [42, 43], 
can be used to create crypto functions or systems, which are used 
to provide predictable keyless en-/decryption systems. But EDUs 
have to be produced in extremely large quantities to leave an impact 
on cyber-security or ASI Safety. We should utilize easy/fast, pref-
erably silicon-based manufacturing technologies to make the final 
units extremely cheap. PUF or SIMPL could still be used to create 
random seed values within an EDU solution. 
This paper uses the unique hardware algorithm to en-/decrypt KS 
data records called Anti-Kerckhoff Engine (AKE). AKE intention-
ally violates the Kerckhoff principle, according to which the secu-
rity of encryption should not depend on the secrecy of the encryp-
tion engine but only on the key [44]. AKE for EDUs must addition-
ally have features preventing its cloning. They are only used for 
storing or caching (nonreplicable) data but not for communication. 
This paper wants to show that AKE is feasible using existing tech-
nology without proposing a concrete or preferred implementation. 
AKE creates and contains (thousands of) hidden Seed Bit Values 
in Memory (SBVM) inaccessible to attackers and produced by a 
(physical) random process within AKE. SBVMs only are consid-
ered vulnerable secret keys, validated as correct keys using a ge-
neric software-simulated EDU. AKE requires a One-Way Data 
Processing Unit (ODPU) with configurable, simple (boolean) com-
puting components to create stable symmetric keys, the ODPU-key, 
in its result, which is used to access the KS data records. ODPU is 
configured with decentralized stored seed bit values from a random 
process. Ideally, SBVM or ODPU cannot be analyzed or probed 
without having some of its data irreversibly deleted or modified. 
No details within the context of SBVM or ODPU can be read or 
manipulated via software instructions. 
In a simple implementation of AKE, SBVMs are randomly gener-
ated within AKE, stored, and protected against any surface probing. 
ODPU is used to form bit-strings, which are then applied via XOR 
on the KS Data records for these data's en- and decryption. For non-

critical security, this level of protection could suffice. But we would 
need to segment MESK keys into distinct Levels of Security so that 
higher security keys are not used on these low-security EDUs. 
In a more complex version, ODPU could be a configurable cube 
with a comparatively small number (e.g., 6-12) of nodes in each 
direction and a hypercube of next neighbor network connection 
structure (i.e., more than six next direct neighbors, e.g., 18 or 26) 
as potential input for key/bit calculations. Connections and nodes 
are configured via an additional unidirectional bus which is physi-
cally impossible to be used for reading-out values. Identical nodes 
are configurable Boolean operators/components that process com-
plex combinations of AND, OR, NOT, NAND, and XOR depend-
ing on their internal states; each node cycles through a variable 
number of these states depending on random initialization or calcu-
lated/volatile values. Because these cubes change their internal op-
erations depending on directly preceding steps, they are used to cy-
cle through cube output into cube input an unknowable number of 
times. Although a fixed number of these cycles is done, the key 
output is independently set via hidden output criteria. Once SBVM 
is processed in ODPU, it creates a long block of bit values, the 
ODPU key, which is then applied via XOR on KS’s data to en-
crypt/decrypt its KS key values. 
It must be accepted that probing capabilities against unique ODPUs 
and hidden seed values will or can eventually be developed. Esti-
mates on when this will happen can be updated. But we should as-
sign to each AKE version a modifiable expiration date until the 
AKE can be used within different Levels of Security. Also, using 
identical, configurable bit-string processing components and sym-
metries in designing AKEs could help auditors spot abnormal hard-
ware malware in AKE via visual inspection methods within the 
manufacturing templates. The solution complexity of XOR and 
AKE could likely be kept manageable. Distributed, non-volatile 
NAND circuits storing bit-values that configure complex bit-oper-
ators are made inaccessible in lower layers from surface probing. 
The operational stability of SBVM and ODPU against adverse or 
unexpected environmental changes would require some redundan-
cies in restoring, rebuilding or resetting seed values or ODPU com-
ponent states. These measures could give AKEs unintentional re-
silience against probing by attackers. But multiple redundancies in 
AKE’s design are suggested to protect the generated keys and ap-
plications: 
1. Storing one or even two orders of magnitude more SBVMs than 

necessary while seemingly used but made irrelevant for key-
generation with minuscule/random changes or settings; more 
SBVMs would require attackers to seek full knowledge about 
all SBVMs and AKE’s entire internal (physical) details; 

2. Using a portion of stored SBVM to build/disconnect/modify 
ODPUs internal network connections and nodes while most 
seed values used for permanent changes were irretrievably de-
leted or distributed over AKE’s NAND components; 

3. Providing a block cipher of no predetermined or predesigned 
size; however, on average, the length of ODPU keys should be 
larger than the average key sizes of KS data records 

4. Multiple (unique) hardware ODPUs are used simultaneously to 
create dynamically generated ODPU keys, while only one de-
crypts a KS data record correctly because one ODPU-key was 
selected to encrypt (symmetrically, i.e., via XOR) a stored key 
in KS. 
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5. Validity of ODPU-generated keys is initially checked, e.g., 
with a one or two-byte basic checksum/hashcode partial (at-
tached to each stored KS key record name), allowing to discard 
false strings generated by non-used ODPUs quickly. Therefore, 
only ODPU (bit) strings with unique hash value partial are se-
lected as ODPU keys. The selection method could be unique 
for AKE, hidden or context-dependent, i.e., being knowable by 
humans. 

6. The EDU maintains a current, encrypted backup file in which 
public-key related hashcodes are stored to rebuild the stored KS 
data when a different AKE (new SBVMs or a reset ODPU) is 
used. Reset will require an updated EDU component ID (con-
taining the old one) and a new set of EDU-specific public/pri-
vate keys. The old private key is not recovered because it is not 
part of the backup. Instead, EDU’s public key is turned into a 
honeypot using flagging on TKR and KAS. Access to backup 
files requires the private key on an external Key Restoration 
Service – no humans are involved or notified. 

7. AKE should have an additional Deadman Switch (DMS) that 
detects a possible exposure of AKEs/EDUs circuits to physical 
probing; it could trigger a reset on the AKE. The DMS should 
try to inform external systems with details from the black-box 
type data recorder about environmental parameters or suspi-
cious events that have triggered DMS. If these data are exter-
nally confirmed as anomalies or known attack patterns, they are 
automatically recorded as an event that requires further inves-
tigation. If DMS fails to connect for its reporting, DMS will 
preventatively modify the hidden SBVM with a new random 
generated seed. Newly created private/public key pair or restor-
ing the KS data records must wait until the reporting with 
black-box recorded data is confirmed – the IT device is still 
working, but some security features are frozen. 

 

For physical probing, it is expected that attackers need to destroy 
layers for scanning internal states. Invasive methods would change 
cached SBVM or ODPU states – which would likely trigger the 
DMS or the Key Restoration Service. Any destruction, tamper evi-
dence, or records in the black-box recorder should lead automati-
cally to an investigation into its circumstances. 
An acceptable worst case is that AKE and KS/EDU reveal in an 
attack at most a single encryption key in cleartext; all other encryp-
tion keys remain inaccessible because of EDU destruction or auto-
reset. However, we know other worse attack scenarios are plausible 
and must be considered via external key detection methods. 

5.3 Hashcode Referencing  
Keys stored in KS/EDU components could have associated attrib-
utes that may change. It would be challenging to refer to keys con-
sistently via their name, purpose, or associated metadata. Instead, 
keys are uniquely identified and referred to locally and globally via 
their hashcode generated by an agreed-upon hash algorithm (SHA-
x or others) extended by data related to the used TKR that provides 
the key. Additional characters referring to associated key attributes 
are attached/included in computed hashcode strings in communica-
tion and eCommerce. These hashcodes are then called Enhanced 
Hashcodes. Key related data can be organized internally like the 
X.509 PKI certificates, but humans would never see them in 
cleartext. The advantage of using enhanced hashcoded is to make 
quick automated and intentional inferences on the type of commu-
nication partner related to the keys. It should be easy to identify if 

keys belong to an ASI, a business, a government, an adult user, or 
a teen requiring different software protection types; they could be 
updatable. However, regular EDU-related hashcodes should al-
ways be raw, i.e., standard hash enhanced by TKR identifier, while 
higher Levels of Security keys are detectable by enhancement data. 
Hashcode references are internally used within the KS/EDUs to in-
dicate which key has been used in encryption or must be used for 
decryption. Full hashcode values are never being made transparent 
to the outside or less trusted internal computing components. How-
ever, when session keys or private keys are received, they can be 
associated with sender’s URL, IP address, or routing information. 
EDU Clients receive encrypted content from servers or other clients 
then the session key associated with the IP address is used. Gener-
ally, hashcodes of public keys are associated with the Server’s 
URL, unique hardware component ID, or metadata for context and 
performance. 
Because there are situations where the IP address/URL information 
is not reliable or accurate enough, additional hints for message rout-
ing are required, e.g., among devices’ security components. There-
fore, messages could contain a short 3 to 8-digit/byte partial of pub-
lic keys hashcode in cleartext outside the encrypted content. The 
receiving system could narrow down which active keys or compo-
nents should be tried for the decryption, e.g., in a load-balancing 
data-secured environment. These modifications to communication 
are relevant for EDU to EDU messages only. 

5.4 KS/EDU Instantiation 
All KS/EDUs generate unique hardware component-specific key 
pairs in their instantiation as part of the manufacturing. These hard-
ware-related key pairs are used when any other applicable key is 
available to establish secure communication via exchanging ses-
sion keys (subsection 4.6.1). 
When hardware instantiation is done in bulk, there is less chance 
that a single manipulated component has some exceptional features 
for stealing keys. As part of this instantiation, every EDU will re-
ceive (basic) public key data shared among all EDUs. Within this 
instantiation process, all components’ public keys are stored in bulk 
in manufacturer-related and/or public Trustworthy Key Reposito-
ries (TKR). Manufacturing, instantiation, and key storage process 
ensure that not a single public key from the components’ key pair 
is or can be seen in cleartext. 
By default, KS/EDU units receive public keys or MESKs of multi-
ple services, allowing the KS/EDU to participate instantaneously in 
safe communication with other primary systems, like the software 
update servers, hashcode directories, TKRs, Key Restoration Ser-
vices, Key Announcing Servers, or Governmental/Law Enforce-
ment Servers. This instantiation also sets the Level of Security (e.g., 
Top, Important, Service, or Regular) at which the EDU is allowed 
to operate. 

5.5 Trustworthy Key Repositories (TKR) 
Trustworthy Key Repositories are not necessarily centralized key 
directories. Including routing info in the hashcode helps EDUs find 
distributed TKRs from where it receives the public key. 
TKR stores components’ corresponding unique hardware IDs be-
side public keys of instantiated KS/EDU components and provide 
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these data as a global public security service. For independent serv-
ers, TKR also stores URLs and other metadata. MESK providing 
services provide MESK Subset IDs associated with sets of hash-
codes or their partials from MESK subsets to TKR. These subsets 
define the full subsets of keys stored on the different KS instances. 
All TKR data are redundantly stored in a protected manner in mul-
tiple equivalent TKR systems. 
The slightest hint/evidence of a possible security breach within the 
manufacturing process or KS-related value storage in their TKR 
systems should have serious repercussions. The cost of operational 
security must dwarf the damages of a single security breach. The 
reputation of a manufacturer or TKR host, i.e., how serious they are 
taking security measures, is transparent via manufacturer IDs im-
printed in KS/EDUs model IDs. Manufacturers must be economi-
cally and reputationally deterred from collaborating covertly with 
governments or organizations that could collude with ASI. Failures 
in following security rules could turn into a full recall of all affected 
public keys, including a possible recall for batches of KS/EDU 
hardware. 
There will be much more organizational security around TKRs than 
for regular, consumer-level KS/EDU units. Therefore, a successful, 
comparable hardware attack on a TKR system is extremely un-
likely. Moreover, it is non-transparent where a specific key is 
stored. In TKRs, the encrypted data storage on Storage Mod-
ules/Key-Safes could be done with a simple access key stored 
within the hardware without additional protection from an AKE. 
All TKRs together must make available potentially trillions of keys, 
accessible via component IDs and hashcodes, which would require 
optimized hardware that offers a sufficient amount of redundancy 
and performance. 

6 Application of Trustworthy En-/Decryption 
6.1 ASI-Safety Application of Basic KS/EDU 
With the rise of ASI, separate, independent watchdogs [39] are es-
sential to control components for automatically detecting ASIs’ 
rule violations as part of an early warning system. However, if these 
watchdogs would depend in their communication or local storage 
on flawed security features provided by the main CPU or OS, these 
components are likely useless against an ASI-level adversary. The 
reason for having KS/EDUs in every watchdog is to validate watch-
dogs operating software, receive commands/data, or send evidence 
to remote trustworthy servers via the Internet (i.e., EDU to EDU) 
in case ASI violates rules or deceives humans, using a MUS-archi-
tecture (section 4.7).  
Most importantly, reliable and secret data exchange between dedi-
cated watchdog components will keep ASI in the dark about what 
humans know, what evidence they already have collected, or what 
they will do. This information advantage is essential if we want to 
be a step ahead in deterring ASI. ASI Safety is based on automated 
Basic-KS/EDU operations without human involvement.  
Every KS/EDU auto-assigns itself to a communication hub; EDU 
may create its own instance if no other is around within a user’s/or-
ganization’s intranet. Communication hubs create an additional 
check on what is being installed on other EDUs, i.e., if they are 
standard-compliant or rogue. 

Cables or plugs connected to legacy IT systems could use minimal 
KS/EDU systems to ensure that the IT device’s power could be 
switched-off reliably in an event in which we must stop ASI glob-
ally. For a secure implementation of local power/switch-off (emer-
gency) features, local users should stay in control, e.g., choosing to 
ignore or overwrite such signals, so that this remote off-switch fea-
ture is a lesser target in cyber warfare or cyberattacks. Local user- 
or server-related KS/EDUs are paired with their local hub by de-
fault so that a Kill-All-ASI signal transmitted to these local hubs 
suffice. Users or administrators could easily delay (or ignore) 
power interruption signals to their (legacy) devices if they think 
their concrete situation requires it. 
Pairing devices with local network hubs could be conveniently as-
sociated with taking ownership. Relocated KS/EDU can be effort-
lessly transferred to other hubs via auto-detection and a simple 
manual confirmation by their new users/owners. This automation 
could be based on fuzzy owner-ship-detection, i.e., without identi-
fying individual owners or avoiding transfer in crowded places. 
Finally, any direct attack on the protection or integrity of the basic 
implementation of Trustworthy Encryption/Decryption must be 
considered as a possible preparation of ASI attacking humankind. 

6.2 Enhanced-KS/EDU 
Unbreakable encryption is a controversial idea. Therefore, a basic 
implementation of Trustworthy Encryption/Decryption is designed 
for ASI Safety, i.e., machine-to-machine messaging, and not for 
being used in human communication. A real danger is that trust in 
communication and eCommerce could be attacked at scale and ir-
reparably destroyed with ASI. If Trustworthy Encryption is used in 
Communication or eCommerce, the issue of trust in CPU/OS will 
come into play soon. 
The enhanced implementation of KS/EDU, also called Enhanced 
KS/EDU or E-KS/EDU, is designed to be used by humans and is 
not restricted to ASI-Safety. The main problem with E-KS/EDU is 
that any software, including malware or adversarial ASI, could le-
gitimize their transactions using E-KS/EDU components, or con-
firmations from E-KS/EDU can be considered useless. A compara-
ble API Problem [10] is known from crypto cards. Making sure that 
crypto devices are used as intended requires solutions before rolling 
out KS/EDU for human utilization.  
Like basic EDUs, E-KS-EDU’s communication is intentionally in-
compatible with TLS/PKI. Before humans can use Key-Safes, two 
very serious problems must be solved, or progress from Trustwor-
thy Encryption is insignificant. Trust issues are seen but insuffi-
ciently handled in TLS or PKI. They must be addressed better, or 
we would risk harming humans or their organizations. 
1. Enhanced KS/EDU provides reliable evidence, automatically 

or manually confirmed. Commercial transactions using 
KS/EDU must be authorized by users or done transparently in 
their interest. Without preventing unauthorized transactions in-
itiated by malware/ASI or having Irrefutable Transaction Con-
firmations, we have no trust or Trustworthy eCommerce.  

2. Unbreakable encryption in the communication between hu-
mans and between humans and machines/ASI is considered un-
acceptable. In unbreakable Trustworthy Communication, we 
must support interfaces for Legitimate Surveillance that bad ac-
tors cannot misuse. 
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In general, whatever deployed KS/EDUs are tasked to do, they 
must comply with a narrow purpose and strict input/output stand-
ards. The misuse of Trustworthy Encryption can be detected as an 
anomaly because standard apps already prevent misappropriations. 
Developing new or customizing EDU solutions could be welcomed 
but scrutinized and binary hashcoded/ whitelisted, i.e., accepted as 
a beneficial solution helping to provide evidence-supported truth. 
These strict constraints on EDUs are detrimental to developing im-
provements or new EDU features. Therefore, special EDUs must 
be provided to developers so that the hassles from MUS’s inter-unit 
guarding are reduced for developers’ convenience. 

6.3 Unauthorized Transactions and Irrefutable 
Transaction Confirmations 

Reliability of authorizations exists already as a problem in eCom-
merce. The most popular solution is currently 2FA (2-Factor Au-
thentication) and its implicit authorization for transactions. This 
system might be sufficient for now, but under the condition that we 
may have ASI as a possible adversary, it is not good enough. ASI’s 
attacks are likely cross-device, undermining 2FA. 
Additionally, ASI could exploit weaknesses by leaving false evi-
dence against innocent users. Humans could start blaming ASI be-
cause it is plausible that ASI can successfully plot complex crimes 
while framing innocent others. Some rogue customers may hope to 
succeed with dishonesty by blaming ASI. Humans are already 
skeptical about fake news. With the rise of AI/ASI, there is a factual 
basis for distrusting online transactions. Cybercrime is already an 
annual 1 trillion-dollar problem (in 2020) [45], with projected 10.5 
trillion-dollar damages by 2025 [46]. But it could get worse. People 
could make a career in telling horrible stories about ASI even if 
there is no ASI around capable of doing this yet. Unfortunately, it 
is undecidable if ASI is a real adversary or a blamed bogeyman. So, 
what if distrust in eCommerce is beyond a tipping point? 
For most applications in eCommerce, we need to be sure that a 
transaction is (i) being presented truthfully (the “Offer”) and then 
(ii) authorized by the user (the “Acceptance”). We need irrefutable 
evidence for all stages, including payment and service perfor-
mance. Currently, we assume that transactions are not intentionally 
manipulated. In a world with more cybercrime or ASI, both sides 
of a transaction take risks in every online/business transaction. 
There are multiple ways to create Trustworthy eCommerce. Watch-
dogs and KS/EDU could generate or store transaction evidence. We 
must have standardized features that would require both sides of a 
transaction to generate by default irrefutable transaction evidence 
as part of every eCommerce transaction step. Some components 
were discussed in [47]. Furthermore, instead of using complex de-
vice or interface implementations vulnerable to OS manipulations, 
we should better use simple, dedicated secure confirmation inter-
faces (SCI) that are either associated with the IT device or person-
ally held by users. It is conceivable that additional video evidence 
may be requested or automatically generated to link users/owners 
to a confirmation step. 

6.4 Trustworthy Communication with Legitimate 
Surveillance 

There are good reasons for surveillance of humans: law enforce-
ment and governments demand it because crime-fighting is their 

service to the community. A similar argument applies to voice, 
video, or text surveillance between ASI and humans or organiza-
tions because there is the risk that ASI could bribe or blackmail 
people and organizations. 
People do not expect privacy in the public sphere, and many cities 
already have comprehensive surveillance programs for public 
safety. But surveillance is also a serious intrusion into someone's 
privacy and civil rights. There are situations in which surveillance 
or eavesdropping is accepted: 
1. Parents have the right to protect their underage children online.  
2. Technology for illegal purposes should not create wrong win-

ners. Law enforcement must protect public against criminals. 
 

However, there are issues: governmental overreach is considered a 
problem even in authoritarian regimes because who controls the 
controller? Independent oversight via court orders could prevent 
rogue bureaucrats, criminals, or ASI from using the same interfaces 
for other nefarious goals. 
Most governments in the world demand that eavesdropping on the 
communication between humans must be possible. Once unbreak-
able communication is feasible, we must find a common technical 
foundation from which all countries can build their own systems: 
1. E-KS/EDU should receive digitally certified warrants or court 

orders, allowing KS/ EDU to share session keys while law en-
forcement eavesdrops/records the encrypted message (outside) 
on the wire (and parents, e.g., within their Intranet) 

2. Warrants or court orders in E-KS/EDU are time- or scope-lim-
ited (i.e., which application or websites are covered), and who 
are the receiver(s) of session keys 

3. Warrants/court orders must detect and respect territoriality and 
ownership of devices 

4. The concept of warrants/court orders could also support scripts 
or trigger criteria for E-KS/EDU to allow, e.g., parents to re-
ceive data from their underage teens 

5. E-KS/EDU’s features/software must be under public and open-
source scrutiny 

 

Hashcodes with additional attributes (Enhanced Hashcodes) could 
enable KS/EDU to make important inferences on what kind of en-
tity is on the other side of the communication. Thereby E-KS/EDU 
would be able to detect if users are communicating with other hu-
mans or with servers or ASI. Hidden metadata on source, type, 
and/or key purpose associated with the key-related hashcodes can 
be used by E-KS/EDU to trigger follow-up operations automati-
cally, e.g., helping to acknowledge transactions manually or send-
ing session keys to other servers to facilitate or automate legitimate 
surveillance. The advantage of including additional data within 
hashcode becomes clear when we need to change data related to 
teens when they become adults without changing the underlying 
private/public keys. 

7 Discussion of Near-Perfect vs. Achievable Security 
The zero incidence goal in Near-Perfect Security is a motivating 
goal, like zero accidents in air traffic or nuclear energy. This paper 
assumes that humans in the operation of security are a liability. Hu-
mans should not see keys in cleartext or process them in their main 
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CPU. Detection of failures should be automated, including investi-
gating possible security incidences to preserve privacy. 
Unfortunately, Near-Perfect Security is not pragmatic enough to 
accept failures as chances to learn and improve security measures 
and processes. Instead, sufficient key or device security has to share 
zero tolerance for every possible point of failure, as in aviation ac-
cident investigations. Every detected and investigated incident 
could have much worse consequences. Therefore, using black-box-
type recordings of relevant evidence, automatically generated pre-
investigation data, and evidence gathering in non-prevented secu-
rity failures is extremely important for learning, improving, and 
preparing for future threats. Implementing measures to protect de-
vices or keys from attackers gaining control with methods that are 
based on past knowledge and experiences is the absolute minimum; 
without that level of protection, there is no security. Detecting fail-
ures automatically, i.e., gathering evidence of cleartext key usage 
outside EDU, is critical to sufficient security. 

7.1 Detecting Stolen Secret Keys 
Although we should prevent even the theoretical chance of having 
encryption keys being leaked in cleartext (covertly), we can never 
know if we are successful. Even if we assume stealing keys is be-
yond ASI's abilities, we require ubiquitous overlapping usage de-
tection for successfully stolen keys. Suppose ASI can probe iso-
lated EDU instances; many, potentially all, keys could be extracted 
from KS, i.e., more than the acceptable worst case. In this super 
worst-case, attackers could leave probed KS/EDUs intact and users 
unaware of the attack. Then we would only have left ASI with one 
uncertainty: has it extracted all keys? Exacerbating this situation 
for ASI requires KS data records that are unencryptable or genuine-
looking decoys, including honeypot keys. 
Stolen public keys are not immediately announced as deactivated 
by KAS. Additionally, private keys for all exposed public keys are 
considered successfully calculated (e.g., with quantum computa-
tion). The compromised system could be a client, a server, or even 
a security-related service (categorized as a server). Because ASI 
succeeded in stealing keys, we assume that ASI is running a soft-
ware version/simulation of the attacked KS/EDU hardware appear-
ing as a client or server. Knowing public/private keys, ASI can do 
Man-In-The-Middle-Attacks (MITMA) for the attacked but intact 
EDU. The attack scenarios that we need to consider are, therefore: 
ASI (a) imitating client instances, (b) pretending to be a server in-
stance, and (c) operating an invisible (potentially manipulative) 
middleman between the attacked client and server. 
In all three scenarios, the task is to detect that the other party is a 
software instance trying to simulate KS/EDU. The detection goal is 
to provoke a response that a hardware version would not have done. 
If a software version's masquerade is about to be detected, we as-
sume that the attacker either makes things up (i.e., lies) or creates a 
communication interruption (see section 4.6.3). Both responses 
trigger automated follow-up inspections capable of creating evi-
dence for an attack. Non-compromised EDUs are expected to report 
unexpected behavior immediately. 
The detection of stolen keys can be done during the initialization of 
the communication, i.e., in the key exchange (see section 4.6.1). 
Alternatively, EDU must detect data manipulated during data ex-

change, i.e., both sides creating metadata about their previous com-
munication (see section 4.6.2) and compare them. Detecting a pas-
sive use of crypto keys (on eavesdropped encrypted data) would 
require other tools not considered in this proposal. 

7.2 Discussion of KS/EDU's Key Security  
Data exchange is safe if symmetric session keys are kept secret and 
are crypto-analytically unbreakable. After the exchange, session 
keys are on both sides in protected hardware (i.e., KS/EDU). These 
session keys (unknown size/type) are safe within KS/EDU if not 
delivered to legitimate third parties for legal reasons. Also, keys 
stored in separatable Key-Safe are safe, as they are protected by a 
unique hardware system that would change its operation when at-
tacked. KS data are not lost because of an EDU reset. A backup file 
could automatically rebuild KS data from backed-up hashcode ref-
erences and data received from external TKRs. 
Extreme safety within the key and data exchange will cost perfor-
mance and potentially slow down the initialization of communica-
tion. These extreme measures are overkill, useless, and misappro-
priated scarce resources for most users, organizations, and applica-
tions. However, the problem with that argument is that keys must 
be protected on potentially vulnerable devices against hardware be-
ing probed. Top governmental, corporate, or product development 
activities will likely get more attention from ASI than most users 
interested in entertainment, private communication, or socializing. 
Therefore, based on security clearance, relevance for a corporation 
or infrastructure, or self-assessment, multiple Levels of Security 
could be created, e.g., four levels: Top, Important, Support, and 
Regular. Each level would receive dedicated MESK keys. Regular 
users do not require MAETS.  
Regular devices may not be contacted with higher security keys or 
receive corresponding hashcode references because they may have 
low-security key-management features and cannot be trusted. 
High-security EDUs could use low-security keys, but they would 
never comingle these keys of different/higher Levels of Security. 
EDU’s Business rules could prevent public keys from Top/Im-
portant clients or servers from being stored on more vulnerable 
Support-category devices. Top, Important, or Support categories 
systems could also have more extensive black-box recorders, regu-
larly analyzed by publicly scrutinized software, done by experts 
with appropriate clearance. 
There is no scarcity or prohibitive expensive resource utilization 
related to keys; managing them is expected to be extremely cheap 
- fully automated. Compromised keys are deactivated. Old and de-
activated keys are treated as possible honeypots by default, but ASI 
is not expected to use them. 
Most importantly, once humanity determines that ASI can under-
mine EDU’s key security, we could (A) accept that low-security 
implementation of EDU is insufficient and reduce its distribution 
over the time accordingly. Alternatively, (B) humanity could con-
clude that ASI violates rules by breaking humans' security 
measures and blocking ASI from using certain facilitating services 
like unrestricted access to quantum computation or manufacturing 
capabilities. Or (C) humanity could stop and kill ASI globally [38] 
before it entirely undermines and deactivates humankind’s Kill-
ASI capabilities. Suggesting which option should be chosen is be-
yond the scope of this paper. 
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7.3 Discussion of KS/EDU's Device-Security  
Misusing enhanced EDU devices is a more difficult issue because 
there are many more details to consider when humans are involved. 
Basic EDUs within ASI Safety have strict/narrow implementations 
within allowed usage scenarios and few or no exceptions. Enhanced 
EDU in eCommerce or human communication has more compli-
cated business rules and potentially many exceptions due to busi-
ness or political interests. Security should accommodate these fea-
tures, but predicting if EDU device security could be kept close to 
near-perfect security cannot be given. Misuse of trustworthy en-
cryption might be likely if the purpose of Enhanced KS/EDU sys-
tems is not being kept very narrow. 
If EDU is part of a network, i.e., part of a MUS (Multi-Unit-Secu-
rity), and uses a communication hub, we could use redundancy to 
create another level of protection against covert EDU manipulation. 
However, if EDUs are isolated, attackers can probe EDUs’ AKE 
and Key-Safe. Also, attackers could replace isolated EDUs with 
compromised components trying to deceive the to-be-protected de-
vice; the attacker could succeed if the OS is not strict in its refusal. 
Even in an IT environment with multiple EDUs, EDUs could be 
challenged or misused by malware. Without restrictions on soft-
ware, i.e., without having software binary-hashcoded and white-
listed, it is difficult to predict if EDU cannot be tricked into provid-
ing its capabilities for the wrong tool or purpose. Therefore, exe-
cutable Watchdog-type solutions [39] could facilitate an environ-
ment where only known, i.e., binary-hashcoded, executables are ac-
cessible by the main CPU. 

7.4 Discussion of Peripheral Security Measures 
Seeking near-perfect or sufficient security for keys and devices in-
volves controlling multiple peripheral aspects within technical se-
curity measures; these features must be proactive and preventative. 
Manufacturing KS/EDU and their instantiation were discussed as 
part of the basic implementation (Section 5.4). Another peripheral 
aspect is EDU’s local log data or evidence storage (Section 4.8) and 
investigation of network or power outages (Section 4.6.3). 
We need to be prepared for security breach detection because ASI 
will not make it easy to gain evidence for ASI’s rule violations. 
When ASI is threatened to be caught, it may start initiating power 
or connectivity outages as a cover-up. The proposed detection ef-
fort remains vulnerable without knowing if interruptions are coin-
cidental or intentional. EDUs could sense the scope of outages and 
store data in their black box. For causal or statistical conclusions, 
the outage data should be reported to decentralized network servers.  
A beneficial side-effect of minimizing false-positive reporting is 
that we have an independent tool to help determine the many causes 
of genuine outages. Due to full transparency, the type and anonym-
ity of reported data do not violate users' anonymity during these 
automated reportings. If EDU-related security features are imple-
mented right from the beginning, costs of operating automated se-
curity are insignificant, and the advantages for our understanding 
of power, computing, and network infrastructure reliability and 
trustworthiness could be significant, ahead of ASI. 
Additional automation or structures within other Pre- and Post-Se-
curity activities, e.g., investigations, false-positive or false-negative 
reduction in reporting, etc., could enhance the proposed security 

measures. Still, discussions of these or other enhancements are out-
side this paper’s scope. 

8 Conclusions 
The main goal of crypto-key security is to defend crypto-keys from 
being seen in cleartext or used unauthorized. This paper has pro-
posed a technical foundation for significantly improving security 
against a superior adversary, a hypothetical artificial super intelli-
gence that can modify compiled software and steal unprotected en-
cryption keys. 
Zero-incidence rate of Near-Perfect Crypto-Key/Device Security is 
more of an ideal or motivational goal for establishing sufficient se-
curity and proactive or reactive measures to prevent an attacker 
from gaining unauthorized access to crypto keys. If proposed pre-
vention or protection tools fail, automated detection of stolen keys 
within data exchange exposes these compromised keys. 
An essential feature of Trustworthy Encryption and Decryption is 
to separate security- and crypto-key-related from regular, versatile 
computation on CPU, GPU, or unsecured microcontrollers under 
the control of the main OS via the use of protected key-safes linked 
to unique EDUs. EDUs, in a basic ASI Safety version, validate and 
update operating software, receive commands/data, and collect and 
send evidence to dedicated remote servers as part of an early warn-
ing system that works entirely independently of human participa-
tion. Shielding crypto-keys from a key-stealing ASI is the new de-
fense line in protecting humanity in a conflict with a rogue ASI that 
we may have to switch off in our defense against its resistance. 
Using isolated crypto devices in hostile environments is an unpro-
tectable situation. Crypto devices must be connected and inter-
guarding their operational integrity. Using secrets from its initiali-
zation and continuous use, EDU validates that other EDUs are 
hardware-based. A software simulation of an EDU is a sure sign of 
a successful attack. 
Standard-compliant, tightly controlled Enhanced EDUs, supporting 
a narrow feature focus, must be used in communication and eCom-
merce to establish trust within our technical infrastructure. The gen-
eration of irrefutable evidence is required to eliminate or mitigate 
cyber-crime. Unbreakable encryption must be restricted with legit-
imate backdoors for providing court-ordered access to session keys 
that can only be used for passive eavesdropping by law enforce-
ment or concerned parents. If separated from the main CPU/OS, 
legitimate surveillance can technically be implemented without 
granting malicious actors the same access. 
With the protection of crypto-keys/devices, humanity has the foun-
dational tools to create additional protection solutions against an 
adversary intellectually and operationally far superior to humans. 
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