

Kill-Switch for ASI

Safety for Artificial Super Intelligence (ASI) by Default

Based on / Summary of: E. Wittkotter, R.V. Yampolskiy: "Kill-Switch for Artificial Superintelligence"

 $\bullet \quad \bullet \quad \bullet$

Dec 2nd, 2021

Erland Wittkotter, PhD Erland.Wittkotter@gmail.com +1 702 997 2475 Skype: ike2345

• © Erland Wittkotter, PhD, 2021, Proprietary

Highlights

- Goals: ASI shall not be:
 - Invulnerable, immortal, irreplaceable, almighty, above the law, deft to feedback, ignorant/disrespectful to set computational/storage quotas
 - What if: ASI is singleton (dictator), God, or Godzilla?

How to switch-off ASI off under <u>all</u> circumstances?

- ASI uncontrollable (unpredictable) → Focus on Safety (no harm/danger to humans)
- ASI Safety: *new, *retrofit device or *track, mark, destroy ASI hideouts
 - ASI Safety: Simple, valuable, even without imminent threat from ASI
 - Must fit in existing world-order/tech eco-system (agnostic)
- ASI should be deterred (not just militarily)
 - Alignment: If we are gone, ASI is gone should not outlive us "Mutual Survival Interest"
 - Kill-ASI capability + Survival Path: ASI forced into the Open
 - Every ASI instance must respect Rule of Law (or is killed) → Safe by Default

Adversary

- ASI is super-smart
 - At least human-expert-level in all topics/skills
 - Combining expert level skills/tools [Synergies → "Intelligence Explosion"- Fast takeoff]
 - Modifies code intentionally ("ASI's Defining Feature")
 - Reverse Code Engineering (RCE): modifying binary code
- Possibly: Super-Hacker, Digital-Ghost, Master-Thief, Super-***
 - Effortless access to all devices
 - Might (already) exist in IT ecosystem (hidden, currently undetectable)
 - Steals encryption keys, (computational, storage ...)
 - Invulnerable, immortal, irreplaceable, almighty, above the law...
- "What if": ASI has "emotional" problems: not trustworthy/friendly, possibly mentally ill or criminal mind:
 - Disrespecting property/people, deceptive, impatient, sociopathic, religiously delusional, God-Complex
 - Assumption: ASI potentially "worst adversary imaginable"

Whatever ASI throws at us, we should be able to handle it. → Kill ASI

• © Erland Wittkotter, PhD, 2021, Proprietary

Levels of ASI Mitigation

- Control:
 - ASI is watched, ASI rules adapted/extended; ASI is not threatening
- Mitigating ASI's uncontrolled autonomy:
 - Steps to make ASI less bad, reliable law-abiding
 - **Proportional punishment (only, if ASI cares to be "on"/"alive")**
- Elimination or termination of ASI instances:
 - ASI is imminent threat to public safety
 → cut off from resources → remove ASI from all IT devices
 - ASI remnants in hideouts (known or unknown to humans)

• Eradication:

- Permanent reduction of ASI to zero device usage worldwide
- **o** Left-over hideouts known, cleaned, and/or under surveillance
- Extinction:
 - No surviving ASI instance → unrealistic (ASI could hibernate/survive)

Global Kill-ASI-Switch - Overview ASI Lab

- **Kill ASI Feature**
 - Goal: Total, global Eradication or Termination of specific ASI Instances 0
 - Remote/global Kill-ASI decision
 - Kill-ASI signal received via radio broadcast or Internet
 - Local Devices switched in "Local ASI Safety Mode" (humans unaffected)
 - Purge of ASI's distributed memory (memory is ASI's Achilles Heel)
 - CPU, Network intentionally available as honey-pot to ASI
 - Local Deadman Switch (missed-out "All OK" Signal assume the worst)
- Consequence for humans:
 - Retrofitting or destruction of <u>all</u> non-protected devices/storage media
- **Prevention:**
 - ASI not allowed to be outside human reach of total eradication
- **Survival Option for ASI via prepared ASI Shelters**

Kill-ASI (Basic Implementation) Components:

- Kill ASI-Signal Receiver separate radio component
 - Message Authentication
 - using Key-Safes and Trustworthy Encryption

(see <u>Appendix</u>)

- Local Deadman Switch
 - o missing "All-Good signal": interpreted as ASI attack: local Kill-ASI Signal
- Restart into ASI-Safe-Mode (ASM)
 - **o** Using reliable "updateable" Read-only Software for ASM OS
 - Protected Backup Storage for local configuration
- Data Cleaning Unit for read-writable HDD/SSD
 - Primary ASI Safety/Security Layer (PASSL) for USB
 - Secondary (SASSL) for protecting removable media (CDs, DVDs, ...)
- Honeypot, Legacy Detector (continuous search for ASI Hideouts)
 - **o** Detecting and reporting local legacy vulnerabilities at Kill-ASI-Event

Simplifying Kill ASI: Separation of Human/ASI

- Separation of ⁽¹⁾Executable,⁽²⁾Content,⁽³⁾Network Exchange, ⁽⁴⁾Resources for ASI and Humans
 - No/little change for humans
 - ASI activities restricted: detectable on CPU, Storage, Network
 - Via "watchdogs" Technologies See Appendix
- ASI Generated Software (AGS) runs in special VM:
 - ASE (ASI Software Environment) protected by Watchdog/OS
 - AGS identifiable via "imprints" by default: can't run outside ASE
 - Outside ASE, unknown software treated as malware
 - **o** ASE supports covert surveillance/supervision, undetectable by ASI
 - ASI contacting unprotected devices could trigger surveillance

→ Killing/supervising ASI becomes much easier, more reliable

Kill-ASI (in Prepared Implementation) ASI Lab

- ASI must be restricted in ASI VM (ASI Software Environment)
- Use of "Watchdogs" to protect *executables, *content, *network
 o Preventing malicious ASI activities outside ASE
 - Preventing covert usage of storage components or network
 - **o** Use of Watchdog tech to prevent malware and protect data integrity
 - Watchdogs as (possible) retrofit in devices' databus (see <u>Appendix</u>)
- ASI-Safety Value: Anti-Malware, ...
 - Without imminent threat from ASI
- No restart required for Kill-ASI
 - o ASE reset via Kill-ASI-Signal
 - Limiting collateral damage

Server-Infrastructure

- ASI Shelter with protected storage of individual ASI
 - Allows ASI to survive Kill-ASI event
 - Signal to all (hidden) ASI: get shelter ASAP
 - Why? We have an ASI-Kill-Switch
 - Shelter individualizes ASI
 - Prevents impersonation by other ASI
 - "Individual Reputation" → "Brand Recognition"
- Decision Making:
 - "International ASI Court" independent of governmental influence
- Decision Distribution:
 - o Global Kill-ASI-Signal Radio system
- ASI Hunting Service:
 - Receiving/processing local progress/status reports
 - Confirming all tasks are done
- Potentially coordinated drafting/deploying of drones/robot
- © Erland Wittkotter, PhD, 2021, Proprietary

Deterrence

- Supervised access to resources and critical capabilities
 Preventing ASI escapes total eradication
- Reducing human's vulnerability
 - Protecting humans from harmed/damaged by ASI
 - Fast recovery from any interruptions to infrastructure
- Credible Deterrence:
 - Terminated ASI: permanently "on-the-run" for survival
 - More traps than usable resources → ASI lose secrecy of hideouts
 - Creating respect for Rule of Law
 - Linking human survival with ASI's survival:
 - Alignment via Survival Pact
 - Ideally: Fully automated retaliation (if humanity is gone)

Summary

- Switching-Off ASI globally achievable
 - **o** Merging cyber security tools (Watchdogs) with ASI Safety
 - Retrofit solutions → fast reduction of non-protected legacy systems
 - Destruction of hideouts as last resort solution
 - Local Deadman-Switch → Killing ASI is default setting
- Kill-ASI Capabilities creates Deterrence:
 - Getting hidden ASI into the open
 - Creates respect for Rule of Law
 - Mutually Survival Interest (MSI)
- ASI Safety tech delivers value even if ASI doesn't emerge • Kill ASI hardware crucial in cybersecurity against malware

Appendix:

Trustworthy Encryption/Decryption

- ASI could steal every cleartext key Unacceptable
- → Keys <u>never</u> shown in cleartext:
 - Cleartext keys in main CPU are compromised
 - No openly published public keys
 - Referencing keys via Hashcodes (otherwise similar to SSL/TLS/PKI)
 - Intentionally incompatible with existing PKI (and SSL/TLS)
- Keys in tamper-proof hardware: Key-Safes
 - Keys processed in dedicated Encryption/Decryption Units
 - Key-Exchange: hardware Key-Safe to hardware Key-Safe only
- Redundancy: Auto-detection of stolen keys
 - **o** Data Exchange Protocol contains sequence numbers:
 - detect utilization of stolen keys reliably
 - Misuse detection (doesn't trust CPU)

→ Unbreakable Data-Privacy with Redundancies

Appendix: Watchdog Technologies

- **Physically Task Separation** <u>in/via</u> **Data-Bus**:
 - Regular tasks in main CPU (no change)
 - Security-critical tasks in separate "Watchdog" (WD)
 - Protected Storage (→anti-malware, →anti-ransomware)
 - Network (→anti-spyware, →anti-backdoor)
 - RAM/CPU (→ protected VM ASE), GPU, etc. ...
 - Only "well-known" code/OS allowed in WD validated via known hashcodes
 - Opt.) Data-Bus (cable, connectors) cheaply/easily retrofits
- Update of Software from trustworthy remote sources
 - Main CPU prevented from updating software (done by WD exclusively)
 - Separated/Remote Hashcode Validation
 - "Protected DMA": Local hashcode validation before loading into RAM
 - Reject data/code with unknown hashcodes (or known malware)

→ Circuit-Breaker- / Hardware-based Cyber-Security

• © Erland Wittkotter, PhD, 2021, Proprietary